

Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test

Harlan Faller, P.E. Johnstech International

2009 BiTS Workshop March 8 - 11, 2009

Johns<u>tech</u>°

Agenda

- Introduction
- Fourier's Law and Heat Transfer
- Pulsed Current Techniques
 - Steady-State vs. Pulsed Current Heating
 - Temperature Behavior in Conductors due to Pulsed Current
 - Transient Analysis
- Case Study: Power MOSFET
 - DUT Type and its Electrical Parameters
 - Heat Generation in DUT due to Applied Pulse of Energy
- Conclusions
- Glossary of Terms
- Appendices

3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test

2

5

Steady-State vs. Pulsed Current Heating

- Steady-State: 100% Duty Cycle Static
 - Consistent, internal heating of DUT and Contact Pins
 - $Q_{INT} = I^2 R = m^* c_p^* \Delta T_{SS}$
 - $-\Delta T_{SS} = I^2 R/(m^* c_p)$
 - Obeys exponential law: $\Delta T = \Delta T_{SS}^{*}(1-e^{-t/\tau}) \rightarrow$ heating
- Pulsed Current Heating: transient Dynamic
 - Duty cycle less than 100%
 - Single-shot pulse application
 - Multiple pulse application
 - High pulse currents for duty cycles <1%

3/2009

Living the High Life (High Current & Power)

Temperature Behavior in Conductor During Pulse Current Application

- Heating of bond wires ≈ transient heating of onedimensional slab with a step change in energy generation rate
- CCC* in wire follows same analysis as used for P-C conductors or wire-wrap interconnections

*CCC = Current-Carrying Capacity (Amps)

9

Temperature Behavior in Conductor During Pulse Current Application

- Given a BeCu Contact with these parameters:
 - $-R = 1x10^{-3} \Omega$ m = 1x10⁻⁷ Kg
 - $P = 1x10^{-3}$ Watts $c_p = 400 \text{ J/Kg-K}$
 - Conditions: Contact is a "free body" suspended in air
- At a current of 1 amp @ 100% duty cycle $(t_0/T = 1)$

$$- Q_{int} = I^2 R = m^* C_p^* \Delta T$$

- $-\Delta T = (1^2 * 1 \times 10^{-3}) / (1 \times 10^{-7} * 400) = 25^{\circ} C \uparrow$
- If duty cycle = 50% ($t_0/T = 0.5$) and peak power remains the same...
 - I = 0.707 amps
 - ΔT = (0.707² * 1x10⁻³)/(1x10⁻⁷ * 400) = 12.5°C ↑
 - Thus halving the duty cycle, halved the temperature rise

3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test

Session 1

Living the High Life (High Current & Power)

Transient Analysis using Composite Thermal Equation					
• A 10 Hert	z square wave (P _{AVG} = 1)	W) is applied to a DUT			
and cycle	d 5 times. What is the te	mperature of the die?			
T _{amb} = +30	$^{\circ}C$ R _{th} = 10 $^{\circ}C/W$	$T_{ss} = +60^{\circ}C$			
$C_{th} = 0.01$ V	N -sec/°C T_{ON}^{m} = T_{OFF} = 0.05	sec $TC = 0.10$ sec			
	Table of Calculated	Values			
T ₁	60*(1-exp(-0.05/0.10))	= 23.6°C Heating			
T ₂	23.6*(exp(-0.5))	= 14.3°C Cooling			
T ₃	14.3 + 60*(1-exp(-0.05/0.10))	= 37.9°C Heating TC1			
T ₄	37.9*(exp(-0.5))	= 23.0°C Cooling			
T ₅	23.0 + 60*(1-exp(-0.05/0.10))	= 46.6°C Heating			
T ₆	46.6*(exp(-0.5))	= 28.3°C Cooling			
T ₇	28.3 + 60*(1-exp(-0.05/0.10))	= 51.9°C Heating TC2			
T ₈	51.9*(exp(-0.5))	= 31.5°C Cooling			
T ₉	31.5 + 60*(1-exp(-0.05/0.10))	=55.1°C Heating ~TC3			
T ₁₀	55.1*(exp(-0.5))	= 33.4°C Cooling			
3/2009 Puls	sed Current-Carrying Capacity of Small Metallic Co	onductors as Applied to Device Test 14			

Transient Analysis

Things to consider when using Graph on previous slide

- If pulse time is very short:
 - Power dissipated doesn't have a limiting action
 - Pulse current and maximum voltage form the only limits
- A train of power pulses increases T_{AVG} :
 - DUT doesn't have time to cool between pulses
- Short pulses at low frequencies:
 - Lower the final temperature that the DUT junction reaches
- Peak junction temp usually occurs at end of applied pulse:
 Its calculation will involve transient thermal impedance
- Avg. junction temp is calculated (if applicable) by using avg. power dissipation and the DC thermal resistance

3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test 17

<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

DUT Type and Electrical Parameters

- Package size: 3.3 x 3.3 mm, 0.65mm pitch, 8 pads
- Electrical parameters
 - V_{IN} =20V, max.
 - $-I_{IN} = 40$ A, max.
 - Specific heat ~ 200J/Kg-K
 - Mass ~ 1x10⁻⁴ Kg
 - Electrical resistivity (R_e) ~ 1x10⁻² Ω
- Other
 - $R_{th. i-c} = 2.4^{\circ}C/W$
 - $-C_{\text{th, i-c}} = 0.1 \text{W-sec/}^{\circ}C$
 - $J_{T,max} = +175^{\circ}C$
 - P_{DISS} (<10sec) = 3.8W

Power QFN MOSFET Courtesy: PSi Technologies

ullated Contact	Pin/Insert/IF v
Parameter	Calc. Value
R _E (Contact Pin)	7.0x10 ⁻⁴ Ω/pin
R _E (IF)	1.3x10 ⁻³ Ω/IF
R_E (Contact Pin + IFs)	3.3x10 ⁻³ Ω
R _E (Copper Insert)	2.6x10 ⁻⁶ Ω
R_E (Copper Insert + IFs)	3.9x10 ⁻⁵ Ω
R _{TH} (Contact Pin)	142°C/W
R_{TH} (Contact Pin + IFs)	150°C/W
R _E (Copper Insert)	0.5°C/W
R _E (Copper Insert + IFs)	1.0°C/W

Interface Evaluation & Thermal Rise

- Evaluation of IFs @ V_{IN} = 20V and 40A
 - $V_{IF. Sn-BeCu} = 40A^{*}7.6x10^{-4}\Omega/3 \text{ pins} = 10 \text{mV/pin}$
 - $V_{IF. Au-BeCu} = 40A^{1.3x10^{-3}}\Omega/3 \text{ pins} = 13.4 \text{mV/pin}$
 - Softening voltage is 70mV for tin and 80mV for gold
- Calculate S-S temp rise across contact pins
 - $-\Delta T_{SS} = I^2 R/(m^* c_p) = 40^2 * (1.1 \times 10^{-3}/3)/(3^* 2.6 \times 10^{-6} \times 418.7) = 171^{\circ} C$
 - $R_{th} = 150/3 = 50.0^{\circ}C/W$
 - $C_{th} = m^* c_o = 3^* 262 \times 10^{-6*} 418.7 = 3.3 \times 10^{-3} \text{ W-sec/}^{\circ} \text{C}$
 - $-\tau = R_{th} * C_{th} = 50.0* 3.3 \times 10^{-3} = 165$ milliseconds
 - $-\Delta T_{pin} = 171^{*}(1 exp(-0.100/165)) = 0.1^{\circ}C$

3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test 25

Session 1

Living the High Life (High Current & Power)

Conclusions

- Generally, reducing the duty cycle of a current pulse applied to a conductor reduces its internal temperature rise
- Transient analysis can be done in several ways...
 - By using the equations presented herein
 - By using a thermal Z vs. pulsed DC graph
- Application of a high peak power pulse of short duration to a power MOSFET is possible w/o damage to the device, providing:
 - Applied pulse is single-shot and of short duration (Duty cycle \sim 0)
 - Repetition time of pulse is very long (several seconds)
 - Breakdown voltage of the device is not violated
- Examples and most data in this presentation are calculated

Glossary Of Terms				
Terms and Units used in Heat Transfer				
– Heat flux	J/m²-s			
 Heat transfer rate 	$dQ = qA(W/m^2)$			
– Mass density, ρ	Kg/m ³			
– Specific heat, c _o	J/Kg-K			
– Thermal conductivity, k	W/m-K			
 Thermal energy 	Q(Joules)			
 Thermal resistance, R_{TH} 	°C/W			
 Thermal capacitance, C_{TH} 	W-sec/°C			
– Thermal time constant, γ or τ	seconds			
3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conduc	ctors as Applied to Device Test 28			

Appendix A: Thermal Characteristics of Materials						
	<u>Material</u>	<u>Conductivity</u>	<u>Specific Heat</u>			
	Silver	429.0 W/m-K	325 J/Kg-K			
	Copper	401.0	384			
	Gold	319.0	129			
	Aluminum	237.0	903			
	Tungsten	173.0	125			
	Nickel	90.4	444			
	Beryllium-Copper	90.0	420			
	Iron	80.4	450			
	Platinum	71.6	133			
	Tin	66.8	227			
	Lead	35.3	128			
Source: Ruben, S., Handbook Of The Elements (Open Court: La Salle, IL 1996)						
3/2009 Pulsed Current-Carrying Capacity of Small Metallic Conductors as Applied to Device Test 29						

Appe	Appendix B: Softening/Melting Voltages						
	<u>Material</u>	<u>Softening Volts (V)</u>	<u>Melting Volts (V)</u>				
	Aluminum	0.10	0.30				
	Iron	0.19	0.19				
	Nickel	0.16	0.16				
	Copper	0.12	0.43				
	Zinc	0.10	0.17				
	Silver	0.09	0.37				
	Cadmium	0.15					
	Tin	0.07	0.13				
	Gold	0.08	0.43				
	Palladium	0.57	0.57				
	Lead	0.12	0.19				
	60Cu,40Zn	0.20					
Source: Timron Scientific Inc., <i>Electrical Contacts And Electroplates In Separable</i> <i>Connectors</i>							
3/2009	Pulsed Current-Carrying C	apacity of Small Metallic Conduc	tors as Applied to Device Test	30			

Session 1

Living the High Life (High Current & Power)

Appendix C: Critical Factors of Thermal Paths

- Pressure at the interface
- · Hardness of the contact surfaces
- Size of the contact surface asperities
- Geometry of contacting surfaces
- Average gap thickness of void spaces
- Thermal conductivity of fluid in void spaces
- Thermal conductivity of contact materials