

Understanding Specs to Better Simulate Solder-to-Board Performance

Jeff Sherry Johnstech International

2012 BiTS Workshop March 4 - 7, 2012

Johns<u>tech</u>°

Agenda

- Changes in Contactor performance – Inductance effects
 - -Thermal or current carrying effects
 - -Cres and repeatability
- Importance of design margins
- Effects of device configurations
- Mechanical considerations
- Test methods
- Conclusion

03/2012

Causes of Changes in Performance

- Variations in signal path
- Variations in insertion position
- Variations in oxides and debris buildup
- Variations in package platings
- Variations in I/O pitch
- Variations in location of ground or return path
- Variations in insertion forces and speed

High Gain Amplifier Spec Sheet

Devemeter	Specification			Unit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
2.4GHz Transmit Parameters					Front End Module	
Compliance					IEEE802.11b, IEEE802.11g, FCC CFG 15.247, .205,.209, EN, and JDEC	
Nominal Conditions					Specifications must be met across V_{CC},V_{REG} and Temperature; unless otherwise specified.	
Frequency	2.4		2.5	GHz		
Power Supply	3.0	3.3	4.2	V	PA nominal voltage supply (V _{CC})	
V _{REG} Voltage						
ON	3.0	3.1	3.2	V	PA in "ON" state	
OFF		0.00	0.20	V	PA in "OFF" state	
Output Power						
11g	18	18.5		dBm	54Mbps, 0FDM 54Mbps, V _{CC} ≥3.0V	
	19	19.5		dBm	54Mbps, OFDM 54Mbps, V _{CC} ≥3.3V	
11b	20	22		dBm	11Mbps, CCK, V _{CC} ≥3.0V	LNA
EVM		3.3	4.0	%	$P_{OUT(g)}$ =Rated Output Power, 54Mbps OFDM, 50 Ω , see note 1	Rð
Adjacent Channel Power					P _{OUT(b)} =20dBm 1Mbps CCK, note 2	v
ACP1		-36	-33	dBc	V _{CC} ≥3.3V, meeting 11b spectral mask requirements	 1
ACP2		-56	-51	dBc		
Gain	26	30	34	dB		
Gain Variation Slope					At rated power and a given supply voltage, room temp	
Range	3.0		4.2	V		
Frequency	-0.5		+0.5	dB	2.4 GHz to 2.5 GHz	

Schematic

Attp://www.rfmd.com/CS/Documents/RF5755DS.pdf

Testing at hot will stress device if die temperature is exceeded!

03/2012

Effects of Inductance

Higher amplifier gains require lower ground inductance!!

03/2012

High Power Amplifier Spec Sheet

Parameter	Specification			Unit	Condition	
raianietei	Min.	Тур.	Max.	Onic		
Typical Conditions					Temp=25°C, Frequency=2.3GHz to 3.8GHz depending on the evaluation board tune, $V_{CC}=V_{PC}=6.0V$ unless otherwise specified	
Frequency	2.3		2.5	GHz	Tune A	
	2.5		2.7	GHz	Tune B	
	2.7		2.9	GHz	Tune C	
	3.3		3.8	GHz	Tune D	
Output Power		30			Tune A, B, C, D	
EVM		3.0		%	802.16e 16QAM 3/4 modulation, P _{OUT} =+30dBm	
Stability	0		33	dBm	PA should be stable when P _{OUT} is measured from 0dBm to 33dBm	
Gain		11		dB		
Gain Flatness			3	dB	Peak-Peak over any 300 MHz bandwidth	
Noise Figure		5		dB		
Operating Current		1.3		Amp	RF P _{OUT} =+30dBm, V _{CC} =6V	
Quiescent Current		900		mA		
I_VPC Current		10		mA	No RF	
Leakage Current		100		uA		
Turn-on Time from Setting of $\mathrm{V}_{\mathrm{BIAS}}$			400	ns	Output stable within 90% of final gain	
Input Return Loss		-15	-10	dB	In tune band	
Output Return Loss		-10	-7	dB	In tune band	
Stable into Output VSWR			4:1		No spurs above -47 dBm	

🟉 http://www.rfmd.com/CS/Documents/RF5643DS.pdf

Amplifiers have large bandwidths so it is difficult to optimize performance! Large DC power, 1W RF out -> rest is heat!!

03/2012

Material Softening/Melting Voltages

<u>Material</u>	Softening Volts (V)	<u>Melting Volts (V)</u>
Aluminum	0.10	0.30
Iron	0.19	0.19
Nickel	0.16	0.16
Copper	0.12	0.43
Zine	0.10	0.17
Silver	0.09	0.37
Cadmium	0.15	0.16
Tin	0.07	0.13
Gold	0.08	0.43
Palladium	0.57	0.57
Lead	0.12	0.19
60Cu,40Zn	0.20	0.25

Source: Timron Scientific Inc., Electrical Contacts And Electroplates In Separable Connectors

The low melting voltage of Matte Tin can cause test problems!!

03/2012

Current Carrying Example Calculations

For Matte Tin Plated Device

Contact Resistance	Current to Soften	Current to Melt
20 mOhms	3.5 A	6.5A
50 mOhms	1.4 A	2.6 A
100 mOhms	0.7 A	1.3 A
150 mOhms	0.47 A	0.87 A
200 mOhms	0.35 A	0.65 A
250 mOhms	0.28 A	0.52 A
500 mOhms	140 mA	260 mA

Lower C_{res} solutions enable higher current carrying capability!!

0.5mm Pitch Socket Contacts Current Carrying Capacity

Test times can be longer with less current carrying capability!!

03/2012

Socket With Too Much C_{res}

Customer later switched to Contactor using solid contacts to dissipate heat required to achieve desired test times.

Oops!! Excessive heat caused by normal increases in C_{res} and not considering required production duty cycles can melt sockets!!

RDSon Measurements Needs Low C_{res}

FEATURES

SON 2-mm × 2-mm Plastic Package Top View

APPLICATIONS

- Battery Management
- Load Management
- Battery Protection

DESCRIPTION

The device has been designed to deliver the lowest on resistance and gate charge in the smallest outline possible with excellent thermal characteristics in an ultra low profile for space constrained applications.

P-Channel NexFET™ Power MOSFET						
PRODUCT SUMMARY						
	s١	V _{DS}	Drain to Source Voltage	-20		V
L Qg			Gate Charge Total (–4.5∨)	2.6	nC	
∔ Lr₅t	s	Q _{gd}	Gate Charge Gate to Drain	0.5		nC
			$V_{GS} = -1.8V$	71	mΩ	
	R _{DS(on)}	Drain to Source On Resistance	V _{GS} = -2.5V	56	mΩ	
			$V_{GS} = -4.5V$	39	mΩ	
əst	١	V _{GS(th)}	Threshold Voltage	-0.65		V

ABSOLUTE MAXIMUM RATINGS

T _A = 25°C unless otherwise stated		VALUE	UNIT
V _{DS}	Drain to Source Voltage	-20	V
V _{GS}	Gate to Source Voltage	±8	V
	Continuous Drain Current, T _c = 25°C	-5	Α
D	Continuous Drain Current ⁽¹⁾	-5	А
I _{DM}	Pulsed Drain Current, T _A = 25°C ⁽²⁾	-20	Α
PD	Power Dissipation	2.4	w
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C

(1) Package Limited

(2) Pulse duration 10 µs, duty cycle ≤2%

🔖 http://www.ti.com/lit/ds/symlink/csd25302q2.pdf

Wide variations in Contact C_{res} cause excessive false failures!!

03/2012

ROL[™] Technology C_{res} With NiPdAu Plated Device @ 175 °C

Solid contacts provide low and stable C_{res}!

03/2012

Contact Resistance Repeatability – Solid Contact vs. Spring Pin

Actual production data shows C_{res} variability causing false failures!

Contactor RF Repeatability – Solid ROL[™] Technology

Insertion Loss Repeatability for Small Solid Contact - S21

14

Contactor Digital Repeatability – Solid ROL[™] Technology

Solid Contact Variability for TDR Short (ROL[™]100 Contact)

Solid contact has consistent repeatable delay!

03/2012

0.8mm Pitch Verticon[®] 100 BGA Insertion Loss vs. Compression – S₂₁

Shorter Contact lengths improve RF performance!

03/2012

0.8mm Pitch Verticon® 100 BGA Return Loss vs. Compression – S₁₁

Increasing contact interfaces increases variation in RF performance during compression!

03/2012

Importance of Design Margin

- Contact resistance will increase over time
- Debris or oxides may impact C_{res} or ground inductance path
- IR drop across interfaces could cause softening or melting of device plating
- Variation in signal path and ground location will vary electrical performance

All of these will affect Guard Bands and Test Limits

NOTE: The contactor will always add more ground inductance and resistance to the path than solder-to-board performance!

Verticon[®] 100 BGA Modeled Data For Different Pitches – S₂₁

Proximity of grounds affects performance at higher frequencies!

Verticon[®] 100 BGA Modeled Data For Different Pitches – S₁₁

Both pitch and contact design impacts characteristic impedance! ^{03/2012} Understanding Specs to Better Simulate Solder-to-Board Performance 20

Verticon[®] 100 BGA Modeled Data For Different Pitches – S₄₁

Return loss is correlated to Crosstalk!

03/2012

Signal Transition Comparison RF Signal Launch vs. Airplane Take Off

RF performance degrades with every right angle connection!!

03/2012

Mechanical Considerations

- Wiping action vs. no wiping action effects MTBA and cleaning intervals
- One piece vs. multiple parts : more parts = more variability
- Handler interface issues insertion speed
- Maintenance of parts
- Test conditions affect performance

Mechanical features also affect RF performance!

Solid Contact Shows Minimal Wear After 500K Insertions

XL-2 Contact

After 500K Insertions NiPdAu Device Testing

03/2012

C_{res} Test Method Differences

- Testing with correct device plating
 - Gold on gold gives best results. Majority of packages use other platings (i.e. Matte Tin and NiPdAu)
 - Hardness of plating affects performance
 - Oxide level affects performance
 - Wear and contaminants affect life
 - Wiping or self cleaning action affect MTBA
- Testing at correct forces and insertion speeds
 - Higher the force the lower the C_{res}
 - Higher the force the shorter the contact life and MTBA

Conclusion

 Ground inductance is extremely important when measuring high frequency signals and devices with high gain

- Shorter paths result in better electrical performance (hypotenuse shorter than sum of legs)
- Solid contacts have current carrying advantages over contacts with multiple parts
- Fewer contact interfaces result in lower C_{res}
- Repeatability improves both electrical and mechanical data accuracy resulting in higher yields
- Not all specifications are created equal