Johnst<u>ech</u>®

Methods for Characterization of Large Socket Housing Deflection

0

February 2025 Brian Sheposh Valts Treibergs

Johnstech®

AI Device Demands Larger Packages

Many AI applications are moving to larger device packages with higher ball counts.

As spring probe housings become more densely populated, the need for housing strength must be considered to minimize housing bowing.

This presentation will provide validated methods for simulating housing deflection, the need for spring probe preload and its effect on deflection.

Benefits of the Johnstech[®] Spring Probe series will be discussed.

Johns<u>tech</u>®

Copyright 2024, Johnstech International Corporation.

Spring Probe (YARITM and SHOTOTM) - Features

- Single-ended probe architecture for more consistent Cres performance
- Pd alloy tip
- Fully user serviceable contactor architecture – individually replaceable probes

Johnst<u>ech</u>®

Probe Motion and Probe/Housing Interface

Preload Interface

Properly Functioning Preload

Uncompressed state

Consistent board contact is maintained to the board due to probe housing interface. <u>Compressed state</u> Board contact is maintained.

RTP

Board

F_{test}

During the repeated motion between uncompressed and compressed, the probe will always remain in contact with the PCB pad.

© Copyright 2024, Johnstech International Corporation

Loss of Preload Caused by Excessive Bowing

Board contact is

Johnstech

maintained.

Uncompressed state

In situations where housing bow is present, the probe is not held against the loadboard and may lose contact with the PCB pad.

© Copyright 2024, Johnstech International Corporation

Board Chatter Leads to Board Digging

- Probe chatter is a process where the PCB end of the probe makes and breaks contact with the PCB pad - "jackhammer"
- Board chatter can lead to early wear out of PCB pad.

Can be caused by too little preload or too much preload

Johns<u>tech</u>®

Copyright 2024, Johnstech International Corporation.

Case Study with Shoto®

- 1156 Shoto[®] 050 Probes
- 23x23 package
- Simulation Steps
 - 1. Simplify model
 - 2. Define materials and constraints
 - 3. Determine probe preload and spring rate
 - 4. Simulation deflection
- Goals:
 - Determine if the designed preload of 6gm will be adequate.
 - Find the preload limit at which point probe chatter will occur.

Simplify Model

Defeature

- Ignore partial array population
- Eliminate all non essential components
- Only need HSG, FRAME, PCB, Stiffener
- Probe C-drills -> flat bottom

- Cut model to ¼ symmetry
- Consider even/odd arrays to ensure symmetric cuts

© Copyright 2024, Johnstech International Corporation. All products, technologies, logos, and other proprietary information including the ROL[®] pin shape and Johnstech logo are trademarks of Johnstech International, Inc. and are covered within and protected by U.S. and International patents, trademarks, and copyrights.

Johnstech®

ANSYS Model setup

- PCB part
 - Stiffness Behavior: Rigid
 - Material: structural steel
 - Bottom fixed surface

Graphics Properties		
Definition		
Suppressed	No	
ID (Beta)	20	
Stiffness Behavior	Rigid	
Reference Temperature	By Environment	
Treatment	None	
Material		
Assignment	Structural Steel	
 ■ Bounding Box ■ Properties 		
		Statistics

Details of "Fixed Support"			
-	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Face	
-	Definition		
	ID (Beta)	53	
Type Fixed Suppo Suppressed No		Fixed Support	
		No	

© Copyright 2024, Johnstech International Corporation

All products, technologies, logos, and other proprietary information including the ROL® pin shape and Johnstech logo are trademarks of Johnstech International, Inc. and are covered within and protected by U.S. and International patents, trademarks, and copyrights.

Johns<u>tech</u>®

ANSYS Model setup

- Frame part
 - Stiffness Behavior: Flexible
 - Material: 6061 Aluminum
 - Bolt hole surface: Fixed support

1	crains of incoming parcess and in Growing Database and in the High in		
]	Graphics Properties		
]	Definition		
	Suppressed		No
	ID (Beta)		23
	Stiffness Behavio	or	Flexible
	Coordinate Syst	em	Default Coordinate System
	Reference Temp	erature	By Environment
	Treatment		None
]	Material		·
	Assignment		Aluminum 6061-T651
	Nonlinear Effect	s	Yes
	Thermal Strain Effects		Yes
]	Bounding Box		
]	Properties		
	Statistics		
Details of "Fixed Support 2"			
	Scoping Method	Geomet	ry Selection
	Geometry	1 Face	
Ξ	Definition		
	ID (Beta)	55	
	Туре	Fixed Support	

ANSYS Model setup

- Housing part
 - Stiffness Behavior: Flexible
 - Material: MDS-100
 - Bolt hole ID surface: Fixed support (to prevent rigid body motion)

Graphics Properties		
Definition		
Suppressed	No	
ID (Beta)	26	
Stiffness Behavior	Flexible	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Treatment	None	
Material		
Assignment	MDS 100 2	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
Bounding Box Properties		

Johnstech[®]

© Copyright 2024, Johnstech International Corporation.

Define Symmetry

• X-Z Symmetry plane

Details of "Symmetry Region" 👻 🕇 🗖 🗙		
Scope		
Scoping Method	Named Selection	
Named Selection	XZsurface	
Definition		
Scope Mode	Manual	
Туре	Symmetric	
Coordinate System	Global Coordinate System	
Symmetry Normal	Y Axis	
Suppressed	No	

• Y-Z Symmetry plane

Scope		
Scoping Method	Named Selection	
Named Selection	YZsurface	
Definition		
Scope Mode	Manual	
Туре	Symmetric Global Coordinate System X Axis	
Coordinate System		
Symmetry Normal		
e .	M.	

General Analysis Setup

Johnstech®

© Copyright 2024, Johnstech International Corporation.

Connections – Surface Contacts

 Frame and Housing contact region: Frictionless (allows for part separation but not interference)

Note: default is bonded. Change this value from "Bonded" to "Frictionless".

Details of "Frictionless - bowing_332835-0001-1@bowing_: 🖛 🖡 🗖 🗙		
Scope		
Scoping Method	Geometry Selection	
Contact	1 Face	
Target	1 Face	
Contact Bodies	bowing_332835-0001-1@bowing	
Target Bodies	bowing_314579-0001-1	
Protected	No	
Definition	·	
Туре	Frictionless	
Scope Mode	Automatic	
Behavior	Program Controlled	
Trim Contact	Program Controlled	

Allows for separation (based on design)

'Johns<u>tech</u>°

Determine the Probe Preload

Profile the spring probe to capture the spring rate k and probe preload.

$$F_x = F_{preload} + kx$$

Force Application Methods In ANSYS

- Static Structural Force
 - Applies a single force uniformly over the selected probe-bearing surfaces
 - Quick to setup and run
 - Safe Overstates the deflection
 - "Pass" provides approval of design
 - "Fail" requires Spring Elements Method

- Spring Elements Method
 - Applies spring elements between the housing and the board to simulate spring probe preload.
 - Single spring elements are spaced in maximum 5x5 arrays.
 - More time consuming
 - Accurate within 10 μm

Johns<u>tech</u>®

Static Structural Force Method Step 1: Define the Probe Bearing Surface

- Define the housing probe bearing surface by selecting a <u>single probe</u>
 <u>bearing surface</u>.
- Right click and select "Create Named Selection".
- Provide a name and "Apply geometry items of same: Location Z".
- 4. Press OK.

Selection Name	×	
cbores ×	¢	
Apply selected geometry		
Size		
Туре		
Location X		
Location Y Location Z		
Apply To Corresponding Mesh Nodes		
OK Cancel		

© Copyright 2024, Johnstech International Corporation.

Static Structural Force Method Step 2: Apply the Total Preload to the Housing

- Right Click on Static Structural->Insert->Force
- Scoping Method = "Named Selection" and Named Selection to be the name of probe bearing surface from Step 1.3.
- 3. Define by = "Vector"
- 4. Applied By: Surface Effect
- 5. Magnitude = Preload x Bores
- 6. Direction normal to surface of housing.

Copyright 2024, Johnstech International Corporation.

Static Structural Force Method Step 3: Run Simulation and Probe Results

- Preload 6gm (0.059N)
 - 289 x 0.059N = 17.05N
- Center deflection = 0.170mm

FAIL > 0.150mm deflection

Conclusion

 Proceed with Spring Elements Model for more accurate analysis

Johns<u>tech</u>®

Spring Elements Model

- Contact regions derived using compression-only spring elements
- Add spring stiffness constant (N/mm) and nominal preload (N)

 To save time – add elements in 5x5 arrays or smaller

F	Graphics Properties		
Ξ	Definition		
	Material	None	
	Туре	Longitudinal	
	Spring Behavior	Compression Only (Beta)	
	Longitudinal Stiffness	8.5875 N/mm	
	Preload	Load	
	Load	-1.8975 N	
	Suppressed	No	
	Spring Length	2.385 mm	
	Element APDL Name		
	Scope		
	Scope	Body-Body	
	Reference		
	Scoping Method	Geometry Selection	
	Applied By	Remote Attachment	
	Scope	1 Face	
	Body	bowing_337854-0001-1	
	Coordinate System	Global Coordinate System	
	D.f	1.005	

Copyright 2024, Johnstech International Corporation.

Preload = 6gm (0.059N)

- Preload 6gm (0.059N)
 - 5x5 = 1.47 N preload
 - 2x5 = 0.59 N preload
 - 2x2 = 0.24 N preload
- Center deflection = 0.098mm

PASS < 0.150mm

Is this simulation accurate?

Am I able to increase the preload of this probe within this design?

Validation Results on 12 gm Preload

Center array to corner Max-Min Measured: 0.156mm Simulated: 0.153mm

Good match!

© Copyright 2024, Johnstech International Corporation.

Increase Preload

- Preload 10gm (0.098N)
 - 5x5 = 2.45 N preload
 - 2x5 = 0.98 N preload
 - 2x2 = 0.39 N preload

Center deflection

0.164mm

- Preload 12gm (0.119N)
 - 5x5 = 2.99 N preload
 - 2x5 = 1.19 N preload
 - 2x2 = 0.48 N preload

Center deflection

0.200mm

- Preload 15gm (0.147N)
 - 5x5 = 3.68 N preload
 - 2x5 = 1.47 N preload
 - 2x2 = 0.59 N preload

Center deflection

0.246mm

Johns<u>tech</u>®

© Copyright 2024, Johnstech International Corporation.

Case Study with Shoto[®] Conclusion

The curve crosses the 0.15mm deflection at 9.15gm.

Conclusion: For this probe in a 1156 configuration, It is recommended that the preload be designed to be < 9gm.

The selected probe with 6gm preload is acceptable for this design.

Johnst<u>ech</u>®

© Copyright 2024, Johnstech International Corporation.

HERØ HF™ Short Contact w/ High Pin Count

Contactor construction

- Standard CNC machined housing components for quick fabrication – no special tooling required
- BGA / LGA / QFN any configuration
- Spear or crown tip probe option available

<u>Probe</u>

- Individually user replaceable
- Cleanable Pd alloy inline or manual cleaning
- Patent-pending innovative probe architecture

Challenge: Achieving preload with a much thinner housing at 1.00mm test height

Johns<u>tech</u>

Copyright 2024, Johnstech International Corporation.

HERØ HF™ Short Contact w/ High Pin Count

- 783 HERØ HF[™] Probes
- 15x15mm package
- Center deflection = 0.015mm

HERØ HF[™] is well designed for large arrays requiring high data rates.

HERØ HC™ High Compliance w/ High Pin Count

preload

HERØHC[™] is designed with a compliance range to overcome warpage challenges

Up to 0.75mm of travel to final test height of 2.5mm

Challenge: Achieving preload with a much larger packages and higher ball counts.

Johns<u>tech</u>®

Copyright 2024, Johnstech International Corporation.

HERØ HC™ High Compliance w/ High Pin Count

- 2916 HERØ HC[™] Probes
- 55x55mm package
- Center deflection = 0.042mm

Even though larger arrays will inherently lead to higher deflections, the HERØ HC[™] can provide extra compliance to ensure proper preload.

- For large device AI applications, mechanical simulations can aid in the design of the contactor with the right probe and with the right preload.
 - 1. Simplify model remove unnecessary features and apply ¼ symmetry to speed up simulations.
 - 2. Define materials and constraints maintain a verified and controlled library of materials for reference.
 - 3. Determine probe preload and spring rate measure actual probes and use the data in the simulation.
 - 4. Simulate deflection Start with Static Structural Model, if needed verify with Spring Elements Model.
 - 5. Validate simulation measure the actual array

Thank You!

Questions?

